Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Biochem Mol Toxicol ; 38(1): e23625, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38229324

RESUMO

Esophageal cancer, an increasingly prevalent malignancy, is a major concern for global health. The development of esophageal squamous cell carcinoma (ESCC) involves various genetic abnormalities that affect key cell signaling pathways, including Wnt, Hh, Apoptosis, MAPK, EGFR, AKT, Notch, and EMT. Additionally, this malignancy involves some changes in the expression of long noncoding RNAs (LncRNAs). The present study examines the relationship between PYGO2 gene expression and the activity of cell signaling pathways in KYSE-30 and YM-1ESCC cell lines. To this end, several cellular and molecular tests were performed, including cell migration, cell cycle, and apoptosis. Also, expression levels of CD133 and CD44 markers, real-time PCR, and western blot were analyzed after inducing PYGO2 protein expression in the cells. Overexpression of the PYGO2 protein resulted in the upregulation of Wnt pathway-related genes, leading to enhanced cell migration and proliferation and reduced apoptosis in both cell lines. Furthermore, PYGO2 gene expression induction analysis showed the correlation of several involved genes in Wnt, Hh, Apoptosis, MAPK, EGFR, AKT, and EMT pathways with various LncRNAs.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , RNA Longo não Codificante , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Via de Sinalização Wnt , Movimento Celular , Divisão Celular , Regulação Neoplásica da Expressão Gênica , Receptores ErbB/metabolismo , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular/genética
2.
Explor Target Antitumor Ther ; 4(2): 217-226, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205315

RESUMO

Esophageal squamous cell carcinoma (ESCC) is the second leading cause of cancer-related deaths in Iran, often diagnosed in advanced stages with a poor prognosis. Growth and differentiation factor 3 (GDF3) is a member of the transforming growth factor-beta (TGF-ß) superfamily. It acts as an inhibitor of bone morphogenetic proteins (BMPs) signaling pathway associated with pluripotent embryonic and cancer stem cells (CSCs) characteristics. Since its expression in ESCC has not yet been evaluated, the clinicopathological relevance of GDF3 expression was elucidated in ESCC patients. Expression of GDF3 in tumor tissues from 40 ESCC patients was compared to the related margin normal tissues by relatively comparative real-time polymerase chain reaction (PCR). Glyceraldehydes 3-phosphate dehydrogenase (GAPDH) was used as the endogenous control. Likewise, the function of GDF3 in the differentiation and development of embryonic stem cells (ESCs) was also reviewed. GDF3 was significantly overexpressed in 17.5% of tumors and a significant correlation between GDF3 expression and the depth of tumor invasion was observed (P = 0.032). The results suggest that GDF3 expression is likely to have substantial roles in the progression and invasiveness behavior of ESCC. Having considered the importance of CSC markers identification and their exploitation in targeted cancer therapy, GDF3 may be introduced as a promising therapeutic target to inhibit the invasion of tumor cells in ESCC.

3.
Adv Med Sci ; 68(1): 21-30, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36403545

RESUMO

PURPOSE: Cell signaling pathways play central roles in cellular stemness state, and aberrant activation of these cascades is attributed to the severity of esophageal squamous cell carcinoma (ESCC). In this study, we aimed to determine the potential impact of enhancer of zeste homolog 2 (EZH2) gene on different cell signaling pathways including bone morphogenesis protein (BMP), Hedgehog, and Hippo in ESCC, and to illuminate EZH2-mediated gene regulatory networks in this aggressive malignancy. MATERIALS AND METHODS: EZH2 silencing was performed in two ESCC lines, KYSE-30 and YM-1, followed by gene expression analysis of BMP, Hedgehog, and Hippo signaling using RT-qPCR. EZH2 enforced expression was induced in both cell lines and gene expression of the pathways was evaluated in parallel. The contribution of EZH2 in epithelial-mesenchymal transition (EMT) and cell migration were also evaluated. RESULTS: EZH2 downregulation decreased expression of the vital components of the Hedgehog and Hippo signaling, while EZH2 upregulation significantly increased its levels in both ESCC cell lines. The expression of BMP target genes was either reduced in EZH2-expressing cells or increased in EZH2-silencing cells. Enforced expression of EZH2 stimulated downregulation of epithelial markers and upregulation of mesenchymal markers in KYSE-30 and YM-1 â€‹cells. Significant downregulation of mesenchymal markers was detected following the silencing of EZH2 in the cells. Knocking down EZH2 decreased migration, while enforced expression of EZH2 increased migration in both ESCC lines. CONCLUSIONS: These results may support the promoting role of EZH2 in ESCC tumorigenesis through the recruitment of important cell signaling pathways.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais
4.
Genes (Basel) ; 13(12)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36553636

RESUMO

BACKGROUND: Stemness markers play critical roles in the maintenance of key properties of embryonic stem cells (ESCs), including the pluripotency, stemness state, and self-renewal capacities, as well as cell fate decision. Some of these features are present in cancer stem cells (CSCs). TWIST1, as a bHLH transcription factor oncogene, is involved in the epithelial-mesenchymal transition (EMT) process in both embryonic and cancer development. Our aim in this study was to investigate the functional correlation between TWIST1 and the involved genes in the process of CSCs self-renewal in human esophageal squamous cell carcinoma (ESCC) line KYSE-30. METHODS: TWIST1 overexpression was enforced in the ESCC KYSE-30 cells using retroviral vector containing the specific pruf-IRES-GFP-hTWIST1 sequence. Following RNA extraction and cDNA synthesis, the mRNA expression profile of TWIST1 and the stem cell markers, including BMI1, CRIPTO1, DPPA2, KLF4, SOX2, NANOG, and MSI1, were assessed using relative comparative real-time PCR. RESULTS: Ectopic expression of TWIST1 in KYSE-30 cells resulted in an increased expression of TWIST1 compared to control GFP cells by nearly 9-fold. Transduction of TWIST1-retroviral particles caused a significant enhancement in BMI1, CRIPTO1, DPPA2, KLF4, and SOX2 mRNA expression, approximately 4.5-, 3.2-, 5.5-, 3.5-, and 3.7-folds, respectively, whereas this increased TWIST1 expression caused no change in the mRNA expression of NANOG and MSI1 genes. CONCLUSIONS: TWIST1 gene ectopic expression in KYSE-30 cells enhanced the level of cancer stem cell markers' mRNA expression. These results may emphasize the role of TWIST1 in the self-renewal process and may corroborate the involvement of TWIST1 in the stemness state capacity of ESCC cell line KYSE-30, as well as its potential as a therapeutic target.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/genética , Linhagem Celular Tumoral , Genes Homeobox , RNA Mensageiro/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/genética
5.
AMB Express ; 12(1): 160, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36574134

RESUMO

Human enterokinase light chain (hEKL) cDNA sequence was designed with the help of codon optimization towards Escherichia coli codon preference and ribosome binding site design and artificially synthesized with a thioredoxin fusion tag at the N-terminal and a five his-tag peptide at the C-terminal. The synthetic hEKL gene was cloned into the pET-15 expression vector and transferred into the three different expression strains of E. coli BL21(DE3), NiCo21, and SHuffle T7 Express. Different growth and induction conditions were studied using a statistical response surface methodology (RSM). Recombinant hEKL protein was expressed at high levels in soluble form with 0.71 mM IPTG after 4 h of induction at 25 °C. Autocatalytic process cleaved TRX tag with enterokinase recognition site by the impure hEKL and yielded the mature enzyme. The target protein was then purified to homogeneity (> 95%) by affinity chromatography. The activity of hEKL was comparable to the commercial enzyme. From 1 L culture, 80 mg pure active hEKL was obtained with the specific activity of 6.25 × 102 U/mg. Three main parameters that help us to produce the enzyme in the folded and active form are the type of strain, SHuffle T7 strain, TRX and histidine fusion tags, and growth conditions including the increase of OD of induction and IPTG concentration and the decrease of induction temperature.

6.
Iran Biomed J ; 26(6): 440-53, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36437782

RESUMO

Background: Background: Type I inositol polyphosphate-5-phosphatase A (INPP5A) is involved in different cellular events, including cell proliferation. Since INPP5A, HLAG1, IL-10, and matrix metalloproteinases (MMP)-21 genes play fundamental roles in esophageal squamous cell carcinoma (ESCC) tumorigenesis, we aimed in this study to clarify the possible interplay of these genes and explore the potential of these chemistries as a predictor marker for diagnosis in ESCC disease. Methods: Methods: Gene expression analysis of INPP5A, HLAG-1, IL-10, and MMP-21 was performed using relative comparative real-time PCR in 56 ESCCs compared to their margin normal tissues. Immunohistochemical staining was accomplished for INPP5A in ESCCs. Analysis of ROC curves and the AUC were applied to evaluate the diagnostic capability of the candidate genes. Results: Results: High levels of HLA-G1, MMP-21, and IL-10 were detected in nearly 23.2%, 62.5%, and 53.5% of ESCCs compared to the normal tissues, respectively, whereas INPP5A underexpression was detected in 19.6% of ESCCs, which all tested genes indicated significant correlations with each other. The protein expression level of INPP5A in ESCC tissues was significantly lower than that of the non-tumor esophageal tissues (p = 0.001). Interestingly, the concomitant expression of the INPP5A/HLA-G1, INPP5A/MMP-21, INPP5A/IL-10, HLA-G1/MMP-21, HLA-G1/IL-10, and MMP-21/IL-10 was significantly correlated with several clinicopathological variables. INPP5A, HLA-G1, MMP-21, and IL-10 showed to be the most appropriate candidates to discriminate tumor/non-tumor groups due to the total AUCs of all combinations (>60%). Conclusion: Conclusion: Our results represent a new regulatory axis containing INPP5A/HLAG-1/IL-10/MMP-21 markers in ESCC development and may provide novel insight into the mechanism of immune evasion mediated by the INPP5A/HLAG-1/IL-10/MMP-21 regulatory network in the disease.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Linhagem Celular Tumoral , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Antígenos HLA-G/genética , Antígenos HLA-G/metabolismo , Inositol Polifosfato 5-Fosfatases/genética , Inositol Polifosfato 5-Fosfatases/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Metaloproteinases da Matriz Secretadas/genética , Metaloproteinases da Matriz Secretadas/metabolismo
7.
Sci Rep ; 12(1): 18290, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316365

RESUMO

EZH2, as a histone methyltransferase, has been associated with cancer development and metastasis possibly through the regulation of microRNAs and cellular pathways such as EMT. In this study, the effect of EZH2 expression on miR-200c and important genes of the EMT pathway was investigated in esophageal squamous cell carcinoma (ESCC). Comparative qRT-PCR was used to examine EZH2 expression in ESCC lines (YM-1 and KYSE-30) following the separately transfected silencing and ectopic expressional EZH2 vectors in ESCC. Subsequently, expression of miR-200c and EMT markers was also assessed using qRT-PCR, western blotting and immunocytochemistry. Underexpression of Mir200c was detected in YM-1 and KYSE-30 cells after EZH2 silencing, while its overexpression was observed after EZH2 induced expression. Following EZH2 silencing, downregulation of mesenchymal markers and upregulation of epithelial markers were detected in the ESCCs. Our results demonstrate that EZH2 regulates the expression of miR-200c and critical EMT genes, implying that overexpression of Zeb2, Fibronectin, N-cadherin, and Vimentin lead to a mesenchymal phenotype and morphology while underexpression of epithelial genes, enhance cell migration after enforced expression of EZH2 in ESCCs. EZH2 gene can be a beneficial treatment marker for patients with esophageal cancer through decrease invasiveness of the disease and efficient response to neoadjuvant therapy.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Biomarcadores , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica/genética
8.
Iran J Biotechnol ; 20(2): e2733, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36337061

RESUMO

Background: Epithelial-mesenchymal transition (EMT) is a biological process in embryonic development and cancer progression, and different gene families, such as HOX genes, are closely related to this process. Objectives: Our aim in this study was to investigate the correlation between TWIST1 and EVX1 mRNA expression in ESCC patients and also examine the probable regulatory function of TWIST1 on EVX1 expression in human ESCC cell line. Materials and Methods: TWIST1 and EVX1 gene expression patterns were assessed in ESCC patients by relative comparative Real-time PCR then correlated with their clinical characteristics. In silico analysis of the EVX1 gene was conducted. KYSE-30 cells were transduced by a retroviral system to ectopically express TWIST1, followed by qRT-PCR to reveal the correlation between TWIST1 and EVX1 gene expression. Results: The expression of TWIST1 and EVX1 was correlated to each other significantly (p=0.005) in ESCC. Of 28 patients with under/normal expression of TWIST1, 22 samples (78.57%) had over/normal expression of EVX1. TWIST1 overexpression was correlated with advanced stages of the tumor (III, IV) (P = 0.019) and lymph node metastasis. However, EVX1 under expression was associated with lymph node metastasis (p = 0.027) and invasiveness of the disease (P = 0.037) in ESCC. Furthermore, retroviral transduction enforced significant overexpression of TWIST1 in GFP-hTWIST-1 approximately 9-fold compared to GFP control cells, causing a - 8.83- fold reduction in EVX1 mRNA expression significantly. Conclusions: Our results indicated the repressive role of TWIST1 on EVX1 gene expression in ESCC. Therefore, our findings can help dissect the molecular mechanism of ESCC tumorigenesis and discover novel therapeutic targets for ESCC invasion and metastasis.

9.
Biomed Res Int ; 2022: 7607470, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782061

RESUMO

Objective: This study is aimed at investigating the effect of probiotic Lactobacillus rhamnosus on esophageal cancer in vivo and in vitro. Methods and Results: In this study, the cytotoxicity effects of L. rhamnosus supernatant and whole-cell culture on a cancer cell line (Kyse30) compared to 5fu were evaluated by the MTT assay. The real-time PCR method was used to analyse the L. rhamnosus supernatant effect on the expression of Wnt signaling pathway genes. An in vivo investigation in nude mice was done to assess the anti-tumor activity of L. rhamnosus supernatant and whole-cell culture. Both supernatant and whole-cell culture of L. rhamnosus reduced cell survival (Kyse30) P < 0.001. The supernatant of this bacterium significantly reduced the expression of Wnt signaling pathway genes. Administration of supernatant and whole-cell culture of L. rhamnosus expressively reduced tumor growth compared to the control group. The effects of this bacterium on tumor necrosis were quite evident, pathologically P < 0.01. Conclusion: This study is the first report that assessed the potential impact of L. rhamnosus, especially its supernatant on esophageal cancer and Wnt signaling pathway genes. Therefore, this bacterium can be a harmless candidate for esophageal cancer therapy.


Assuntos
Neoplasias Esofágicas , Lacticaseibacillus rhamnosus , Probióticos , Animais , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Camundongos , Camundongos Nus , Probióticos/metabolismo , Probióticos/farmacologia , Probióticos/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real
10.
Iran Biomed J ; 26(4): 301-12, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35490305

RESUMO

Background: Glioblastoma is the most common primary malignant neoplasm of the central nervous system. Despite progress in diagnosis and treatment, glioblastoma still has a poor prognosis. This study aimed to examine whether a signature of three candidate miRNAs (i.e. hsa-let-7c-5p, hsa-miR-206-5p, and hsa-miR-1909-5p) can be used as a diagnostic biomarker for distinguishing glioblastoma from healthy brain tissues. Methods: In this study, 50 formalin­fixed paraffin­embedded (FFPE) glioblastoma tissue samples and 50 healthy tissue samples adjacent to tumor were included. The expression of each candidate miRNA (i.e. hsa-let-7c-5p, hsa-miR-206-5p, and hsa-miR-1909-5p) was measured using quantitative reverse transcription PCR. To show the roles of each miRNA and their biological effects on glioblastoma development and clinicopathological characteristics, in silico tools were used. ROC curves were performed to assess the diagnostic accuracy of each miRNA. Results: Based on the results, hsa-let-7c-5p and hsa-miR-206-5p were downregulated, while hsa-miR-1909-5p was upregulated in glioblastoma tumors compared to healthy samples. No association was detected between the expression of each candidate miRNA and sex. Except for hsa-let-7c-5p, other miRNAs did not correlate with age status. ROC curve analysis indicated that the signature of candidate miRNAs is a potential biomarker distinguishing between glioblastoma and healthy samples. Only hsa-miR-206-5p suggested the association with poor prognosis in glioblastoma patients. Conclusions: Our findings revealed that the signature of three miRNAs is capable of distinguishing glioblastoma tumor and healthy tissues. These results are beneficial for the clinical management of glioblastoma patients.


Assuntos
Glioblastoma , MicroRNAs , Biomarcadores , Perfilação da Expressão Gênica , Humanos , Curva ROC
11.
Microb Pathog ; 162: 105304, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34818576

RESUMO

BACKGROUND: Epithelial-mesenchymal transition (EMT) has a fundamental role in tumor initiation, progression, and metastasis. Helicobacter pylori (HP) induces EMT and thus causes gastric cancer (GC) by deregulating multiple signaling pathways involved in EMT. TWIST1 and MAML1 have been confirmed to be critical inducers of EMT via diverse signaling pathways such as Notch signaling. This study aimed to investigate for the first time possible associations between TWIST1/MAML1 mRNA expression levels, HP infection, and clinicopathological characteristics in GC patients. METHOD: TWIST1 and MAML1 mRNA expression levels were evaluated in tumoral and adjacent normal tissues in 73 GC patients using the quantitative reverse transcription PCR (RT-qPCR) method. PCR technique was also applied to examine the infection with HP in GC samples. RESULTS: Upregulation of TWIST1 and MAML1 expression was observed in 35 (48%) and 34 (46.6%) of 73 tumor samples, respectively. Co-overexpression of these genes was found in 26 of 73 (35.6%) tumor samples; meanwhile, there was a significant positive correlation between MAML1 and TWIST1 mRNA expression levels (P < 0.001). MAML1 overexpression exhibited meaningful associations with advanced tumor stages (P = 0.006) and nodal metastases (P ˂ 0.001). 34 of 73 (46.6%) tumors tested positive for HP, and meanwhile, MAML1 expression was positively related with T (P = 0.05) and grade (P = 0.0001) in these HP-positive samples. Increased TWIST1 expression was correlated with patient sex (P = 0.035) and advanced tumor grade (P = 0.017) in HP-infected tumors. Furthermore, TWIST1 and MAML1 expression levels were inversely linked with histologic grade in HP-negative tumor samples (P = 0.021 and P = 0.048, respectively). CONCLUSION: We propose TWIST1 and MAML1 as potential biomarkers of advanced-stage GC that determine the characteristics and aggressiveness of the disease. Based on accumulating evidence and our findings, they can be introduced as promising therapeutic targets to modify functional abnormalities in cells that promote GC progression. Moreover, HP may enhance GC growth and metastasis by disrupting TWIS1/MAML1 expression patterns and related pathways.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Proteínas de Ligação a DNA , Transição Epitelial-Mesenquimal , Helicobacter pylori/genética , Humanos , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Proteína 1 Relacionada a Twist/genética , Regulação para Cima
12.
Adv Med Sci ; 66(2): 231-236, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33798953

RESUMO

PURPOSE: Esophageal squamous cell carcinoma (ESCC) is categorized among ten common aggressive malignancies, with a higher incidence and mortality rates in the developing than in developed countries. The inositol polyphosphate 5-phosphatase (INPP5A), as an intracellular-calcium mobilizer and modifier enzyme, facilitates cell responses to various stimuli. Epithelial-mesenchymal transition (EMT), a transformation procedure, has a vital role in cancer progression and metastasis when epithelial cells lose their traits in favor of obtaining mesenchymal features. In this study, we analyzed the correlation between the expression of INPP5A and the involved genes in EMT pathway through the progression and development of the ESCCs. MATERIALS AND METHODS: The gene expression analyses of INPP5A, TWIST1, MMP-2, and EGFR were performed using relative comparative real-time PCR in 58 ESCCs patients compared to corresponding margin-normal esophageal tissues. RESULTS: A significant inverse correlation between INPP5A and EGFR/MMP-2 mRNA expression was observed in tumor samples. Underexpression of INPP5A was significantly correlated with overexpression of TWIST1, MMP-2, and EGFR in different invasiveness and aggressiveness pathological features of the ESCCs (P â€‹< â€‹0.05). CONCLUSIONS: The results propose a tumor suppressor role for INPP5A and oncogenic function for concomitant expression of the other genes in ESCC invasion and metastasis. The current study is the first report elucidating the correlation between the downregulation of INPP5A and upregulation of TWIST1, MMP-2, and EGFR in ESCC and introduces this panel of the genes as a marker for poor prognosis of the disease.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Inositol Polifosfato 5-Fosfatases , Metaloproteinase 2 da Matriz/genética , Invasividade Neoplásica/genética , Proteínas Nucleares/genética , Prognóstico , Proteína 1 Relacionada a Twist/genética
13.
Iran Biomed J ; 25(3): 157-68, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33745265

RESUMO

BACKGROUND: Large intergenic non-coding RNA regulator of reprogramming (LINC-ROR), as a cancer-related Long non-coding RNA, has vital roles in stem cell survival, pluripotency, differentiation, and self-renewal in human embryonic stem cell. However, cancer-related molecular mech¬anisms, its functional roles, and clinical value of LINC-ROR in gastric cancer (GC) remain unclear. In this study, we aimed to investigate probable interplay between LINC-ROR with SALL4 stemness regulator and their role with the development of the disease. METHODS: The mRNA expression profile of LINC-ROR and SALL4 was assessed in tumoral and adjacent non-cancerous tissues of GC patients, using quantitative real-time PCR. RESULTS: Significant LINC-ROR underexpression and SALL4 overexpression were observed in 55.81% and 75.58% (p < 0.0001) of samples, respectively. The expression of LINC-ROR and SALL4 were significantly correlated with each other (p = 0.044). There was an association between the underexpression of LINC-ROR and sex, stage of tumor progression, tumor type, and location of tumor (p < 0.05), and Helicobacter pylori infection with SALL4 expression (p = 0.036). There were also significant correlations between concomitant mRNA expression of SALL4 and LINC-ROR in tumors located at distal noncardiac, positive for H. pylori infection, tumors with invasion into the muscle layer of the stomach, and grade II tumor (p < 0.05). CONCLUSION: The clinical results of the SALL4-LINC-ROR association propose a probable functional interaction between these markers in tumor maintenance and aggressiveness. Our study can help to understand one of the mechanisms involved in the progression of gastric cancer through the function of these regulators.

14.
Mol Cell Biochem ; 476(6): 2465-2478, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33604811

RESUMO

Matrix metalloproteinases (MMPs) play key roles in epithelial-mesenchymal transition (EMT) for the development of cancer cell invasion and metastasis. MMP-13 is an extracellular matrix (ECM)-degrading enzyme that plays crucial roles in angiogenesis, cell cycle regulation, niche maintenance, and transforming squamous epithelial cells in various tissues. CD44, a transmembrane glycoprotein expressed on esophageal tumor cells, is required for EMT induction and invasion in esophageal squamous cell carcinoma (ESCC). The transcription factor TWIST1, as EMT and stemness marker, regulates MMPs expression and is identified as the downstream target of CD44. In this study, we aimed to investigate the probable interplay between the expression of key genes contributing to ESCC development, including MMP-13, TWIST1, and CD44 with clinical features for introducing novel diagnostic and therapeutic targets in the disease. The gene expression profiling of MMP-13, TWIST1, and CD44 was performed using quantitative real-time PCR in tumor tissues from 50 ESCC patients compared to corresponding margin non-tumoral tissues. Significant overexpression of MMP-13, CD44S, CD44V3, CD44V6, and TWIST1 were observed in 74%, 36%, 44%, 44%, and 52% of ESCC tumor samples, respectively. Overexpression of MMP-13 was associated with stage of tumor progression, metastasis, and tumor location (P < 0.05). There was a significant correlation between TWIST1 overexpression and grade (P < 0.05). Furthermore, overexpression of CD44 variants was associated with stage of tumor progression, grade, tumor invasion, and location (P < 0.05). The results indicated the significant correlation between concomitant expression of MMP-13/TWIST1, TWIST1/CD44, and CD44/MMP-13 with each other in a variety of clinicopathological traits, including depth of tumor invasion, tumor location, stage of tumor, and lymph node involvement in ESCC tissue samples (P < 0.05). Collectively, our results indicate that the TWIST1-CD44-MMP-13 axis is involved in tumor aggressiveness, proposing these genes as regulators of EMT, diagnostic markers, and therapeutic targets in ESCC.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Receptores de Hialuronatos/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Idoso , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Humanos , Receptores de Hialuronatos/genética , Masculino , Metaloproteinase 13 da Matriz/genética , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteína 1 Relacionada a Twist/genética
15.
Mol Cell Biochem ; 476(2): 921-929, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33098486

RESUMO

Stemness phenotype is considered as the centerpiece of cancer biology due to its potential in conventional chemo-radiotherapy resistance and tumor recurrence after clinical intervention. This feature in tumor mass belongs to activation of core regulatory stemness factors and different cell signaling pathways in cancer stem cells. We aimed in this study to elucidate contribution of Notch signaling pathway in stemness state of esophageal squamous cell carcinoma (ESCC) through their relevance with stem cell markers SOX2 and SALL4. 50 ESCC tumor and related margin normal tissues were considered and categorized based on SOX2/SALL4 expression pattern, and mRNA levels of Notch signaling genes including ligands, receptors, target genes, and transcriptional coactivator were analyzed in the selected groups using qRT-PCR. Concomitant overexpression of stem cell markers SOX2 and SALL4 in ESCCs upregulated the involved genes in Notch signaling pathway. Upregulation of Notch pathway genes associated with depth of tumor invasion and lymph node metastasis of ESCC. Based on biological function of SOX2 and SALL4 axis in stemness state potential, our results may suggest contribution of Notch signaling pathway in self-renewal capacity of ESCCs, as well as invasion and metastasis of the disease. To the best of our knowledge, this is the first report elucidating the crosstalk between SOX2/SALL4 stemness factors and Notch signaling pathway in cancer research.


Assuntos
Autorrenovação Celular , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Células-Tronco Neoplásicas/patologia , Receptores Notch/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição SOXB1/genética , Transdução de Sinais , Fatores de Transcrição/genética
16.
BMC Cancer ; 20(1): 789, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819319

RESUMO

BACKGROUND: MEIS1 (Myeloid ecotropic viral integration site 1) as a homeobox (HOX) transcription factor plays regulatory roles in a variety of cellular processes including development, differentiation, survival, apoptosis and hematopoiesis, as well as stem cell regulation. Few studies have established pluripotency and self-renewal regulatory roles for MEIS1 in human esophageal squamous cell carcinoma (ESCC), and our aim in this study was to evaluate the functional correlation between MEIS1 and the stemness markers in ESCC patients and cell line KYSE-30. METHODS: Expression pattern of MEIS1 and SALL4 gene expression was analyzed in different pathological features of ESCC patients. shRNA in retroviral vector was used for constantly silencing of MEIS1 mRNA in ESCC line (KYSE-30). Knockdown of MEIS1 gene and the expression pattern of selected stemness markers including SALL4, OCT4, BMI-1, HIWI, NANOG, PLK1, and KLF4 were evaluated using real-time PCR. RESULTS: Significant correlations were observed between MEIS1 and stemness marker SALL4 in different early pathological features of ESCC including non-invaded tumors, and the tumors with primary stages of progression. Retroviral knockdown of MEIS1 in KYSE-30 cells caused a noteworthy underexpression of both MEIS1 and major involved markers in stemness state of the cells including SALL4, OCT4, BMI-1, HIWI and KLF4. CONCLUSIONS: The results highlight the important potential role of MEIS1 in modulating stemness properties of ESCCs and cells KYSE-30. These findings may confirm the linkage between MEIS1 and self-renewal capacity in ESCC and support probable oncogenic role for MEIS1 in the disease.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Proteína Meis1/metabolismo , Células-Tronco Neoplásicas/patologia , Idoso , Linhagem Celular Tumoral , Autorrenovação Celular/genética , Progressão da Doença , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Esôfago/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Fator 4 Semelhante a Kruppel , Masculino , Pessoa de Meia-Idade , Proteína Meis1/genética
17.
Mol Cell Biochem ; 474(1-2): 181-188, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32712748

RESUMO

Notch signaling pathway mediates different biological processes including stem cell self-renewal, progenitor cell fate decision, and terminal differentiation. TWIST1 plays a key role in tumor development and metastasis through inducing epithelial-mesenchymal transition (EMT). Expression of the core transcriptional complex of Notch pathway and its target genes, as well as TWIST1 overexpression, are closely related to the aggressive clinicopathological variables of esophageal squamous cell carcinoma (ESCC). Here we aimed to functionally elucidate probable crosstalk between TWIST1 and Notch pathway in ESCCs. Correlation between TWIST1 and Notch target genes was analyzed in 50 ESCCs and corresponding normal tissues. Using retroviral system, enforced expression of TWIST1 was established in ESCC line KYSE-30 cells and expression of Notch signaling genes was assessed. Significant correlation between TWIST1 and HEY1/HEY2 expression was found in different pathological variable of ESCC poor prognosis. Induced expression of TWIST1 in KYSE-30 cells caused a noteworthy increase of Notch pathway genes expression revealing regulatory role of TWIST1 on Notch signaling genes in the cells. Based on existed correlations between expression of TWIST1 and Notch pathway genes in different pathological features of ESCC patients, as well as KYSE-30 cell line, we may extrapolate that TWIST1 is involved in aggressiveness of the disease through regulation of Notch signaling genes. To the best of knowledge, this is the first report describing the impact of TWIST1 on Notch cascade genes in ESCC.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/metabolismo , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biomarcadores Tumorais/genética , Proteínas de Ciclo Celular/genética , Proliferação de Células , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Prognóstico , Receptores Notch/genética , Proteínas Repressoras/genética , Células Tumorais Cultivadas , Proteína 1 Relacionada a Twist/genética
18.
Gene Expr Patterns ; 37: 119127, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32711119

RESUMO

Twist-related protein 1 (TWIST1), a highly conserved basic helix-loop-helix transcription factor, stimulates epithelial-mesenchymal transition (EMT) and plays a crucial role in the regulation of the extracellular matrix (ECM) and cell-cell adhesion. Our aim in this study was to evaluate the functional correlation between TWIST1 and MMP genes in human ESCC cell lines, KYSE-30 and YM-1. To generate recombinant retroviral particles, the Pruf-IRES-GFP-hTWIST1 was co-transfected into HEK293T along with pGP and pMD2. G as well as Pruf-IRES-GFP control plasmid. Stably transduced high-expressing GFP-hTWIST1 and GFP-control KYSE-30 cells were generated. The produced retroviral particles were transduced into the KYSE-30 and YM-1 ESCC cells. Ectopic expression of TWIST1 mRNA and expression of the MMP genes (MMP-2, MMP-3, MMP-7, MMP-9, and MMP-10) were examined by relative comparative real-time PCR. In silico analysis of the MMP markers and their promoter elements was explored. Moreover, the scratch wound assay was used to evaluate the migration of TWIST1-induced cells. TWIST1 level was up-regulated by nearly 5-fold and 7.4-fold in GFP-hTWIST1 KYSE-30 and YM-1 cells compared to GFP control cells, respectively. Interestingly, this enforced expression of TWIST1 subsequently caused significant overexpression of transcripts for selected MMP genes in GFP-hTWIST1 in comparison with GFP control cells in both ESCC cell lines. Also, the scratch assay indicated that TWIST1 expression effectively increased the migration of GFP-TWIST1 KYSE-30 cells against GFP KYSE-30 control cells in vitro. The present findings illuminate that TWIST1 may contribute broadly to ESCC development in concert with up-regulation of MMPs expression and further suggest the potential advantage of exerting TWIST1/MMPs signaling axis as a framework from which to expand our understanding about the mechanisms of ESCC tumorigenesis.


Assuntos
Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Metaloproteinases da Matriz/genética , Proteínas Nucleares/fisiologia , Proteína 1 Relacionada a Twist/fisiologia , Regulação para Cima/fisiologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas/enzimologia , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/enzimologia , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Regiões Promotoras Genéticas
19.
Environ Sci Pollut Res Int ; 27(25): 31269-31277, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32488710

RESUMO

Esophageal cancer is the eighth most common cancer and the sixth most frequent cause of cancer mortality worldwide. Exposure to polycyclic aromatic hydrocarbons formed by incomplete combustion of organic matter is an important risk factor. Genetic polymorphisms in genes encoding PAH-metabolizing enzymes like glutathione S-transferases (GSTM1, GSTP1, GSTT1) which conjugate glutathione to PAHs for reduction of oxidative stress may affect an individual's response to PAH exposure. Genomic DNA from 50 esophageal squamous cell carcinoma patients extracted from peripheral blood. PCR-RFLP technique was employed to determine GSTM1, GSTT1, and GSTP1 polymorphisms. Aberrant promoter methylation of CDKN2A was applied by methylation-specific PCR technique. Concentration of urinary 1-hydroxypyrene was determined using a HPLC system. About 38.7% showed the null GSTM1 genotype (54% cases and 13% controls), 23.7% showed GSTT1 null genotype (30% cases and 13% controls), and 62.5% were GSTP1 A/A genotype (66% cases and 56% controls). Polymorphic variants of GSTM1 and GSTT1 were significantly associated with aberrant methylation of CDKN2A gene. The null state of GSTT1 was significantly associated with high concentrations of 1-OHP in urea (p < 0.01). There was significant association between methylated states of CDKN2A and high concentrations of 1-OHP in urine (p < 0.01). We identified significant association between polymorphism of GSTs genes and epigenetic silencing of tumor suppressor gene CDKN2A in esophageal squamous cell carcinoma.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Estudos de Casos e Controles , Epigênese Genética , Genes p16 , Predisposição Genética para Doença , Genótipo , Glutationa S-Transferase pi/genética , Glutationa Transferase/genética , Humanos , Polimorfismo Genético , Fatores de Risco
20.
Mol Biol Rep ; 47(5): 3439-3448, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32372171

RESUMO

The homeobox transcription factor MEIS1 is involved in cell fate decision, stem cells properties, gastrointestinal (GI) tract development, and progression of several malignancies such as esophageal squamous cell carcinoma (ESCC). Increasing evidences suggest the crosstalk between MEIS1 and cell signaling pathways. Therefore, our aim in present study was to investigate the probable linkage of MEIS1 expression with key genes of different cell signaling pathways in ESCC tumorigenesis, and their correlation with clinicopathological feature of the patients. The gene expression profiling of MEIS1 and different cell signaling genes including SALL4, SIZN1, and HEY1 (stemness state, BMP, and NOTCH signaling pathways, respectively) was performed using quantitative real-time reverse transcription polymerase chain reaction (PCR) in fresh tumoral compared to margin normal tissues of 50 treatment-naive ESCC samples. The mRNA expression of MEIS1/SIZN1, SIZN1/HEY1, and SIZN1/SALL4 were significantly associated to each other (P < 0.05). There were remarkable correlations between concomitant mRNA expression of MEIS1 and SIZN1 in tumors with invasion to adventitia, early stages of tumor progression and poorly differentiated tumors. Moreover, expression of MEIS1 and HEY1 was correlated to each other in primary stages of tumor progression and non-invaded tumors. Expression of MEIS1 was significantly associated with SALL4 in poorly differentiated tumors. Our results indicated that correlation between different cell signaling pathway-related genes may lead to esophageal tumorigenesis. It is illustrated that MEIS1 as a HOX gene has a significant correlation with stemness state, BMP, and NOTCH signaling pathways via the SIZN1.


Assuntos
Carcinoma de Células Escamosas do Esôfago/genética , Proteína Meis1/genética , Adulto , Idoso , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biomarcadores Tumorais/genética , Carcinogênese , Proteínas de Ciclo Celular/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Genes Homeobox , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Meis1/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA